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A B S T R A C T

in this paper, an algorith<l  is introduced to find a minimum phase transfer function of spec-
ified order whose magnitude ‘lightly)> overbounds a specified real-valued nonparametric
function of frequency. This method has direct application to transforming nonparametric

uncertainty bounds (available from systcm identification experiments and/or plant mod-
eling) into parametric representations required for modern robust control design software
(i.e., a minimum-phase transfer function multiplied by a norm-bounded perturbation).

1 .  I N T R O D U C T I O N

Assume that a discrete-time plant P(z-l ) is estimated as ~(.z-)  ), and let L denote the
uncertainty in the estimate. For example, three common characterizations of plant un-
certainty are LA-additive uncertainty, L1-input  multiplicative uncertainty, and Lo-output
multiplicative uncertainty, where (Morari  and Zafiriou [17] page 224),

I.,A z ]’ – ~

LI = P(P - F) (1)

Lo == (P --- ~)&l

Note that multiplicative representations rccluire a square plant. I.ct I. denote any one of
the above three quantities, Suppose, a nonparametric overbound l(w) on L is known such
that,

l(w) > 5(1.( e-jW7’))  jor a~l u ~ [0, 7r/T] (2)

where “T is the sampling period and 6(L) is the maximum singular value of L. Various
methods are available to find .4(w) from raw data (cf., [3][11] [13] [16]). However, l(w) is a
nonparametric function of frequency and cannot be used directly in modern robust control
software packages such as the Matlab  Robust  Control Toolbox [7], and p synthesis software
[2]. Instead, the uncertainty must be represented as a minimum phase transfer function.
matrix W(Z–l ) of a specified order such that,

L(e--jwT)  =, A~(c-juT) (3)
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wl~cre A is norm-bounded, i.e.,

‘Ile choice of W in (3) can be structured or unstructured. For present purposes,’ the
simplest choice is to use a scalar matrix representation

W=W.  I (4)

where W is a single-input single-output ratiolial function,

In order to incorporate the uncertainty bound (3) into a robust control design, a systematic
method for determining the weighting W in (4) is nccdcd.  Ideally, any approach to find
W should satisfy the following properties:

(PI ) W must overbound  the uncertainty 1, i.e.,./

p’(c+’)[ > 4(LJ) f-cm CIJJ “ E [0, T/T]

in order to cnsu;’e the existence of some 11A\ 1~ <1 satisfying (3).

(1’2)  W should be as tight an overbound as possible to avoid conservatism in the final
robust cent rol design.

(P3) W should bc of specified order (in fact as low order as possible) since it will be
incorporated as a weighting and increase the final controller order.

(P4) W should be stable and minimum-phase.

These rcquircmcnts  on W rule out using several powerful methods from the complex anal-
ysis literature. For example, interpolation methocls  such as Nevanlinna-Pick  theory for
finding rational intcrpolants  to complex valued data [20] C1O not address the real-valued
data case,  and do not satisfy the above properties. For the same reasons, the extension
of intcrpolatory  methods to the noisy data case (cf., Hclmicki ct al. [13] [14], Gu and
Kargonckar  [12], Chcn  et al. [6], Partington  [18], etc. ) are not directly applicable to the
present problem. Even if intcrpolatory  methods could be appropriately modified to ovcr-
bound real-valued data sets (i.e., PI) and do SC) in a minimax optimal sense (i.e., P2), the
final rational fits tend to bc of very high order (e.g., on the order of the number of data
points) and would not satisfy properties P3 and P4 in general.

In this paper, a mathematical programming approach is used to find a W which satisfies
all of the properties P1-P4,  The main idea is to reformulate the problem so as to find
a spcctmlly  ~actorizable  rational function VI~* W whose magnitude tightly overbounds the
squared data 42(w) . ‘Ilis is done in Sect, 2 by posing a minimax nonlinear optimization
problem to ensure tightness-of-fit of a rational function having specified order, with side
constraints to ensure that the data is ovcrbounded,  and that the solution admits a spectral
factorization. A key result in Sect. 3, is that the nonlinear optimization problem can be
solved by a sequence of rewe,iglltcd  constrained linear problems. In particular, a globally
convergent I.inear Programming Spectral Overbounding and Factorization (LPSOF)  algo-
rithm is presented based on solving a scqucllce  of linear programming problems [19]. The
LPSOF algorithm provides a globally optimal solution to the nonlinear problem,
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2. P R O B L E M  F O R M U L A T I O N

In this section, a nonlinear constrained optimization is posed to compute a minimum-phase
transfer function W of order m such that ]IV] is a tight overbound on L(w) for all w. With
this result, the uncertainty can bc written in standard form L = AW where I IA 11~ <1.

Forming the quantity W(Z) W(Z–l ) and evaluating on the unit circle gives an expression
of the form,

W* W ~ & l - (5)
a(w)

whcnw,
p(w) =@, -j ~1 cos(wT) -t- .,. +- ~,jtcos(7nwT) (Ch)

cl(w) == 1 + Cqcos(m)  + .0. + CY,,tcos(?nd’) (6b)

It is noted that a(u) is defined as monic  without loss of generality.

Constraints for Overbounding

The requirement that \ WI bc an overbound  on 1(u) is equivalent to the requirement that
[W]2 is an ovcrbound  on 42 and can bc e x p r e s s e d  as,

Constraints for ‘1’igllt  Overbounding

The requirement that ] W [2 be a “tight” ovcrbound  can be expressed as,

min 6
6,cY,p

where,

(7)

(8)

(9)

Here, the criterion minimizes a worst-case error 6, which is frequency weighted by the
quantity q–~ (LJ).

Constraints for Spectra] Factorizability

The requirement that the overbound ~/a admits a spectral factorization can be satisfied
by ensuring that (Astrom  [1])

~(u)/cY(LJ)  >0 for all w C [0, 7r/T] (lOa)

a(u) >0 for all w E [0, 7r/T’] (lOb)
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Note that condition (lOa)  is implied by (7), and condition (1OL) can be enforced explicitly
by the constraint,

a(w) 2 g >0 jor all w G [0,7r/T] (11*)

for some small Q. For technical reasons, it will be convenient to enforce a similar constraint
on @ as

/3(u)  ~ ~ >0 for all OJ E [0, 7r/T] (llb)

for some small /3.—
In summary, it is desired to solve the optimization problcm  (8)(9) for a, ~ subject to
constraints (7) and (l Oa,b).

3 .  THE I/PSOF’ ALGORTTIIM,/
In this section, the LP-Spectral  Overbounding  and Factorization (LPSOF)  algorithm is
introduced which solves the constrained nonlinear optimization problem of Sect. 2 on grid
of points A == {w], . . . . w~ }. Modifications to extend these results to all w c [0, r/T] will
also bc discussed.

The constrained optimization problcm  restricted to points of the set A can be written as,

min 6
b,~j ,Oj

(12)

P(w) 2 p; 44) 2 Q. (13C)

for all o~, i = 1,...,71

where a(w) and ~(w) are defined by (6a) b). A key observation from (12)(13) is that for
fixed 6 the optimization over a, /? is simply a lilicar programming problem to find a feasible
solution for the cocf%cicnts ~i ~i. Hence, the joint optimization problcm  can be solved by
a nested search procedure where an outer-loop systematically decreases 6 while an inner-
loop finds feasible solutions in the variables a and /? for fixed 6. The procedure terminates
when the smallest ~ is found which admits a feasible solution. This approach is denoted
as the LP-Spectral  Overbounding  and Factorization (I, PSOl?)  Algorithm.

h solve the problem (12-13), one must begin with upper and lower bounds for the optimal
value 6. For example, one can choose the lower bound J. = O and let the upper bound 6+
bc derived from some starting feasible suboptimal  solution (an obvious choice is a = 1, ~ =.
maxwi  12(tii)).  Then  6 = (6+.  + 6-)/2, bccomcs an updated value for 6+ or 6. depending on
whether or not the inequalities (13) can bc satisfied for 6 = ~ (i.e., the bisection method
[8]). In this way the LPSOF algorithm convcrgcs  to the optimal value of 6 geometrically,
(i.e., as a power of 1/2).
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This process can be further accelerated by effectively linearizing about the candidate value
~. Thus, given ~, one can solve the linearized problem:

max u
U,”j,Pj

(14)

(16)

.

,.

subject to
/?(Oi) ‘- t2(Wa)0(ti~) ~ O (15a)

@(Ui)  – t2(U~)0(@i)  ‘- jq(~~)~(~l) < ‘-2 1 (15b)

P(wi) > @ a(w~) > Q- (15C)

jor all Wi,’i =- 1,...,  n,{

Then ~ pi-ovidcs an update for 6. or 6+. according to whether the solution u is negative or
nonnegative. In the latter case a sharper a posicriori  estimate for 6+. is derived via

6+. = m:Ax
{ (

p(w)  2

) }~;) ‘- ~  (~) q-l ((J)

whmw a(w) and ~(w) are the solutions c]erivccl  from (14)(1 5). It is also worth noting that.
setting & = O and solving (14)-(16) provides an cxccllent  starting value for 8+. to initialize
the algorithm.

Remark 1 It is noted that the weighting g may be chosen as certain functions of the un-
known polynomials a and /3 without violating the linear form of the constraints. Generally
q(w) may be taken in the form

(17)

where go(w) and gl (w) are positive for LOCA and specified beforehand, ■

Remark 2 By the fundamental properties of linear programming [9] [10], the I.PSOF
Algorithm is globally convergent and achieves a globally optimal solution to the discrete
problem (12)(13). D

Remark 3 For each fixed value of 6 the semi-infinite linear programming problcm  (7)(9)
and (11 ) (i. e., for continuous valued w ~ [0, m/T]),  can be solved as a scqucncc  of discretizcd
linear programming problems of the form (13) in the limit as the mesh becomes sufficiently
fine (cf., [15], Sect. 7,2). Thus, one can recover the solution to the semi-infinite spectral
ovcrbounding and factorization problem (7)(8)(9)(11) using the LPSOF approach, by solv-
ing a sequence of linear programs with decreasing mesh spacing, for each fixed value of 6,
However, decreasing the mesh spacing may not be desirable in practice, and alternative
methods for approximating the solution to the semi-infinite problem will be presented in
sect.  4. ●
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4.  MODIFICATIONS OF TI-IE  LPSOF  A L G O R I T H M

Strictly speaking, the LPSOF  algorithm only enforces inequalities (7)(10a,b) at the points
in the grid A. Hence, the inequalities may be violated in-between grid points, and the
solution may not be a true overbound and/or may not admit a spectral factor, If this
happens in practice, the simplest solution is generally to choose a denser grid (see Remark
3), and/or increase lower bounds Q., /? in (13c).  However, there may be certain cases where
these approaches are not desirable. ~~ence,  in this section, systematic modifications of the
LPSOl?  algorithm are presented to overcome this problem.

l?or convenience to subsequent discussion, we make the following assumptions,

Assumption 1: Let 12(w) be a linear splint intcrpolant  to the points .!2 (ui) clcfincd on
tl)c gricl A = {w] , ,..,u,,}  with pieccwisc  linear segments having maximum slope H, and
maximum grid size h = maxi {Ui+l  -- tii }.
Assunlption  2: The  set of vectors {[cos(kwl  T), . . . . cos(kunT)]  E !J?n,  k = 0,.,., m} arc
lillcarly  independent,

Modifications of the LPSOF algorithm to ensure proper  behavior between grid points, fall
into two categories, a-priori and a-postcriori.  These methods will be discussed separately
below.

A-I’riori  Modifications

The basic idea behind the a-priori modifications is to enforce additional linear constraints
in the LPSOl?  algorithm so that the derivatives a’(w) = & (o(w)), ~’(w) = #;(~(u))  and

(~/~)’ == &(P/a)  are suitably bounded for azl w < [0, n/T]. This clearly restricts
the excursions of a, /3 and /?/a  in- bciwecn grid points, so that under Assumption 1, and
specification of lower bounds Q, @ in (13c),  the desired inequalities (7),( 10a,b) can be—
satisfiecl.

Some useful definitions arc in order: A function x(w)  defined on the interval w c Q is said
to be uniformly  bounded from above if Ix(u)l  < C < w for all w E Q. Here, the quantity C
is denoted as the uniform  u.ppe~  bound. Similarly, the function Z(W) is said to be uniformly
bounded from below if Iz(w)l  z c > 0 for all u ~ S1. The quantity c is denoted as the
uniform lower bound.

A lncthod  to uniformly bound the aforementioned derivatives is now introduced. For some
positive =, K, K~, and KD, let the following linear constraints be imposed on the grid A:

~(~~) ~ E (18a)

~(~~) < l~OY(Wi) (18b)

lCY’(Wi)/ < 1{~ ]Cl(Lb’j)] (18C)

I@’(wi)l < ~~~ lp(~i)l (18d)

If linear constraints (1 tla-d) are used to augment linear constraints (13a-c) of the LPSOF
algorithm, it can be shown that,

@ < Cl(W:) <ti—— (19cl)
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where (19C) follows from,

()P’=B’ Qf’ b P’ Q’-. ()-——. ——:: —— ———
CY a’ CN

,J ~P~

(19C)

(20)

Inequalities (19a-c) imply that ~, ~, ~/a and their derivatives are bounded on the grid
A. Under Assumption 2, these bounds at the grid points impose bounds on dhc coef-
ficients ~i, @i, (this is because the matrix of trigonometric functions which determines
these cocflicicnts  has a bounded inverse, cf., Ilahlquist  and Iljork [8])). This implies that
la(w)],  ]~(ti)],  Ia’(w)l  and 1~’(ti)[  arc uniformly bounded from above since they are bounded
ful~ctions  of the bounded cc)efflcients  ai, pi. If the uniform upper bounds on Id(u)l and
IP’(u)I  are suficicntly  small, the constraints (13c)  on the grid points imply the existence of
mliform  (non-zero) lower bounds on la(w)  1, l~(ti)  1. Hcnccl by systematically clccrcasing the
values of KP and K& (with the other constraints fixed) onc can make ]a’(ti)l  and IO’(U)I
arbitrarily small, and there will always be some point at which the inequalities (1 Oa,b) are
satisfied uniformly in w. Gi\wn that (lOa,b)  is satisfied in this manner, it follows from (20)
that [(~/a)’  I is bounded uniformly from above. Using (13a) and Assumption 1, it follows
that (7) is satisfied when this uniform upper bound on 1(/?/0)’] falls below the value of K
clefincd  in Assumption 1,

In summary, by augmenting the linear co]istraints (13a-c) of the LPSOF algorithm by
linear constraints (18a-d), and solving a sequence of problems where K8 and Ka arc
systematically decreased, there will be a point at which (7)(loa,b)  are satisfied ensuring
that /3/a is an overbound on 12 jor azl w c [0, x/T’],  and spectrally factorizable.

A-I>osteriori  Modifications

The basic idea behind a-postcriori  mollifications, is to slightly perturb the unmodified
LPSOF solution so that inequalities (7),( 10a,b) arc satisfied uniformly in U. For grid A
sufficiently fine, a small perturbation can always be found which dots the job. To see this,
note that the solution to the problem (12-13) will always satisfy bounds of the form (19),
if the quantities @, K, K~, and K8 are computed a-poste~io~i.  As noted in the previous
discussion, Assumption 2 guarantees corresponding bounds for the cocfllcients  ~i, /?i which
in turn impose uniform upper bounds 0]1 Ia(w)l, l@(w)l,  la’(ti)l and l@ ’(w)l.  Then for a
sufficiently small grid size h, uniform constraints (7)( 10a,b) can be satisfied by means of
an O(h) perturbation of a(w),  f?(w), and 6.
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The construction above implicitly assumes that ~, K, Km, and KB are reasonably sized. If
not, these quantities can be explicitly constrained a-priori, as done earlier.

5 .  N U M E R I C A L  E X A M P L E

In this section, the LPSOF  algorithm is used to dctcrminc  spectrally factorizable ovcr-
bounds on additive uncertainty estimates obtained from large space structure identification
experiments [5]. Raw additive uncertainty data 12(wi ) adapted from [5] is shown in Fig.
1, depicted by the symbol ‘*’, on the grid A == {wi = in/(128 T), i = 1, ..., 128}, where

T = .05 seconds. In addition to the raw data set, the envelope ~2 is depicted in Fig. 1.
‘1’hc cnvclopc ~2 is a smoothed nonpa,ramctric overbound on the raw data -(?2.

In all subsequent examples, the LPSOF  algorithm of Sect. 3 is used in sequential lin-
earized form (14)(15), wfth undcrbounds  g == ~ == O and frequency weighting q(w) =

go +-q] 9(u)/@(u)  where g] = 1, and go remains to bc Specified (s=  (17)). The dual rather
than primal form of the underlying LP problcm  [9] [10] is implemented to considerably
reduce the number of constraint equations. In all runs, 10-15 iterations were sufficient to
ensure convergence of 6 to 6 significant digits.

Ovcrbouncling Raw Data

In this section, the raw data 42 of Fig.1  is ovcrboundcd  using the LPSOF  algorithm of
Sc!ct.  3..

The first set of runs is generated by fixing n~ == 4 and ql == 1 and varying weighting factor
go as go == O, .01, .1, 1. The results arc summarized in Fig. 2, where the raw data .t2
is depicted by the symbol ‘*). It is seen that the overbound associated with q. = O dots
a reasonably goocl job of overbounding the data, but tends to sacrifice some accuracy in
the peaks for accuracy in the troughs (e.g., there is about an 8 db overshoot of the main
peak). Methods to improve the results become apparent,

Met hod 1: De-emphasize the weighting of trough data by increasing go.

Method 2: Reduce oscillatory behavior of the data by overbounding the envelope ~2
rather than raw data 12.

Mcthocl  1 motivates the remaining runs of Fig. 2 which are generated by increasing q.,
(Method 2 motivates using envc]opc  data ratlicr than raw data, which will be discussed
later). It is seen from Fig, 2. that increasing q. from O to .01 improves the accuracy of the
ovcrbound  by several db in the vicinity of the peaks at the cost of accuracy in the troughs.
Increasing go further to .1 and 1 ccmtinucs  this trend. Hence, the user can choose from the
family of curves in Fig, 2, to trade-off accuracy in the peaks for accuracy in the troughs.

The second set of runs is generated by fixing gl = 1, go = 1 and varying the order m as
m = 2, 4, 6, The results are summarized in Fig. 3. It is seen that the successive overbounds
improve uniformly as the order is incrcascd.  In particular, the peaks are fitted reasonably
WCII by bounds of all orders (this is a. conscqucncc  of using q. = 1 for all runs), while most
of the improvement from increasing order comes from fitting the troughs.
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Ovcrbounding  Envelope Data

In this study (in accordance with Method 2 outlined above), oscillatory data is avoided by

overbounding the envelope data ~2 rather than raw data 12 (see Fig. 1).

The runs of Fig.4 are generated by fixing go == O, ql = 1 and varying the order m as
m = 2,4,6. The envelope data ~z is depicted by the symbol ‘*’. It is seen that the
ovcrbounds  for m = 4 and m == 6 are exccllcnt,  and in fact the latter nearly interpolates
the data.

6. C O N C L U S I O N S

A systematic method, denoted as the LPSOF  algorithm, has been developed for finding a
minimum-pha,sc  transfer function of specified order whose magnitude “tightly’) ovcrbounds
a spccifie,d  nonparan~etrf&  real-valued function of frequency. The main idea is to find a
spectrally factorizable rational function which tightly ovcrbounds  the data “squared”. This
lcacls to a nonlinear constrained optimization problem which can bc solved by a sequence
of linear programming problems.

The original motivation behind the development of the LPSOF  algorithm was to systemati-
cally rcplacc  the graphical ovcrbounding  method used in [4] for determining robust control
wcightings.  However, the algorithm is generally useful for determining spectral factors
from raw PSI] data and can be useful in such applications as deconvolution,  disturbance
identification, blind channel equalization, and estimation of noise coloring filters.
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Figure 1. Raw additive uncertainty data .f2 (denoted by ‘*’) and envelope
data ~2 (denoted by ‘-’) defined on 128 point grid.
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Figure 2. Spectrally factorizable overbounds ~/cY on raw data  42 (denoted
by ‘*’) using unmodified LPSOF algorithm (Q = @ = O, ql = 1, m = 4)
obtained by varying weighting factor go = O, ,01, ,1, 1.
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